Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0545120130230111577
Journal of Microbiology and Biotechnology
2013 Volume.23 No. 11 p.1577 ~ p.1585
High ¥â-Glucosidase Secretion in Saccharomyces cerevisiae Improves the Efficiency of Cellulase Hydrolysis and Ethanol Production in Simultaneous Saccharification and Fermentation
Hongting Tang

Jin Hou
Yu Shen
Lili Xu
Hui Yang
Xu Fang
Xiaoming Bao
Abstract
Bioethanol production from lignocellulose is considered as a sustainable biofuel supply. However, the low cellulose hydrolysis efficiency limits the cellulosic ethanol production. The cellulase is strongly inhibited by the major end product cellobiose, which can be relieved by the addition of ¥â-glucosidase. In this study, three ¥â-glucosidases from different organisms were respectively expressed in Saccharomyces cerevisiae and the ¥â-glucosidase from Saccharomycopsis fibuligera showed the best activity (5.2 U/ml). The recombinant strain with S. fibuligera ¥â-glucosidase could metabolize cellobiose with a specific growth rate similar to the control strain in glucose. This recombinant strain showed higher hydrolysis efficiency in the cellulose simultaneous saccharification and fermentation, when using the Trichoderma reesei cellulase, which is short of the ¥â-glucosidase activity. The final ethanol concentration was 110% (using Avicel) and 89% (using acid-pretreated corncob) higher than the control strain. These results demonstrated the effect of ¥â-glucosidase secretion in the recombinant S. cerevisiae for enhancing cellulosic ethanol conversion.
KEYWORD
¥â-glucosidase, Saccharomyces cerevisiae, Cellulase, Simultaneous saccharification, fermentation, Ethanol
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)